I’m a postdoctoral researcher with a Juan de la Cierva fellowship in the Soil and Water Conservation Research Group in CEBAS-CSIC (Murcia, Spain). Currently, I focus on the impact of climate change and landuse change on hydrology and soil erosion in Mediterranean environments. In collaboration with FutureWater I have developed a coupled hydrology-soil erosion model (SPHY-MMF), which I have applied in the Segura River catchment. Please visit the pages related to my research output (publications, presentations and projects) and to my outreach activities (blog and videos).
Recently, I published a systematic review in Earth-Science Reviews along with my colleague Joris de Vente, in which we studied the impact of climate change on soil erosion, with an additional focus on conservation measures and land use change. This is the first systematic review that I have published, but it already gave me some interesting insights. In this blog post I want to share those insights, which hopefully can help you in your next systematic review. First, I will give a short overview…
International Journal of Climatology 44 (12): 4495-4514, 2024
Climate change is expected to cause important changes in precipitation patterns in Iran until the end of 21st century. This study aims at evaluating projections of climate change over Iran by using five climate model outputs (including ACCESS-ESM1-5, BCC-CSM2-MR, CanESM5, CMCC-ESM2 and MRI-ESM2-0) of the Coupled Model Intercomparison Project phase 6 (CMIP6), and performing bias-correction using a novel combination of quantile mapping (QM) and random forest (RF) between the years 2015 and 2100 under three shared socioeconomics pathways (SSP2-4.5, SSP3-7.0 and SSP5-8.5). First, bias-correction was performed on ERA5-Land reanalysis data as reference period (1990–2020) using the QM method, then the corrected ERA5-Land reanalysis data was considered as measured data. Based on the corrected ERA5-Land reanalysis data (1990–2020) and historical simulations (1990–2014), the future projections (2015–2100) were also bias-corrected utilizing the QM method. Next, the accuracy of the QM method was validated by comparing the corrected ERA5-Land reanalysis data with model outputs for overlapping years between 2015 and 2020. This comparison revealed persistent biases; hence, a combination of QM-RF method was applied to rectify future climate projections until the end of the 21st century. Based on the QM result, CMCC-ESM2 revealed the highest RMSE in both SSP2-4.5 and SSP3-7.0 amounting to 331.74 and 201.84 mm·year−1, respectively. Particularly, the exclusive use of the QM method displayed substantial errors in projecting annual precipitation based on SSP5-8.5, notably in the case of ACCESS-ESM1-5 (RMSE = 431.39 mm·year−1), while the RMSE reduced after using QM-RF method (197.75 mm·year−1). Obviously, a significant enhancement in results was observed upon implementing the QM-RF combination method in CMCC-ESM2 under both SSP2-4.5 (RMSE = 139.30 mm·year−1) and SSP3-7.0 (RMSE = 151.43 mm·year−1) showcasing approximately reduction in RMSE values by 192.43 and 50.41 mm·year−1, respectively. Although each bias-corrected model output was evaluated individually, multi-model ensemble (MME) was also created to project the annual future precipitation pattern in Iran. By considering that combination of QM-RF method revealed the lower errors in correcting model outputs, we used the QM-RF technique to create the MME. Based on SSP2-4.5, the MME climate projections highlight imminent precipitation reductions (>10%) across large regions of Iran, conversely projecting increases ranging from 10% to over 20% in southern areas under SSP3-7.0. Moreover, MME projected dramatic declines under SSP5-8.5, especially impacting central, eastern, and northwest Iran. Notably, the most pronounced possibly decline patterns are projected for arid regions (central plateau) and eastern areas under SSP2-4.5, SSP3-7.0 and SSP5-8.5.
Hydrological Sciences Journal 69 (11): 1417-1435, 2024
The new scientific decade (2023-2032) of the International Association of Hydrological Sciences (IAHS) aims at searching for sustainable solutions to undesired water conditions - may it be too little, too much or too polluted. Many of the current issues originate from global change, while solutions to problems must embrace local understanding and context. The decade will explore the current water crises by searching for actionable knowledge within three themes: global and local interactions, sustainable solutions and innovative cross-cutting methods. We capitalise on previous IAHS Scientific Decades shaping a trilogy; from Hydrological Predictions (PUB) to Change and Interdisciplinarity (Panta Rhei) to Solutions (HELPING). The vision is to solve fundamental water-related environmental and societal problems by engaging with other disciplines and local stakeholders. The decade endorses mutual learning and co-creation to progress towards UN sustainable development goals. Hence, HELPING is a vehicle for putting science in action, driven by scientists working on local hydrology in coordination with local, regional, and global processes.
Agricultural Water Management 297: 108818, 2024
It is likely that climate change will increase irrigation water demand and, consequently, reduces water security in the Mediterranean Basin if current irrigation supply and demand conditions are maintained. Climate change adaptation can be achieved by (1) decreasing irrigation water demand through more efficient irrigation techniques, (2) increasing irrigation water supply by adopting new technological advances, (3) converting to rainfed agriculture, and (4) implementation of Nature-based Solutions for water retention. The aim of this study was to assess the effectiveness of different combinations of these adaptation options on water security through analysis of contrasting scenarios of socio-economic development. We defined plausible scenarios of climate change, land use change and adaptation measures for an intensively irrigated catchment in south-eastern Spain under three Shared Socioeconomic Pathways (SSP), representing different storylines of socio-economic development. We considered three SSP scenarios, including the Sustainability pathway (SSP1), the Middle of the Road pathway (SSP2) and the Fossil-fueled Development pathway (SSP5). Future land use distributions were obtained with the iClue land use change model by accounting for differences in irrigation water demand and supply, resulting in a decrease (SSP1), a constant (SSP2) and an increase (SSP5) in irrigated agriculture. The impact of each scenario on a series of water security indicators was quantified using the SPHY-MMF hydrology-soil erosion model. The SSP2 scenario, which considers very limited climate change adaptation, projects the most severe impacts on water security, including an increase in plant water stress, flood discharge, hillslope erosion and sediment yield. Under SSP1, which accounts for most climate change adaptation strategies, irrigation water demand is significantly reduced due to a shift from irrigated to rainfed agriculture and the implementation of reduced deficit irrigation, while Nature-based Solutions reduce the impact on other water security indicators. Under SSP5, a conversion from rainfed to irrigated agriculture causes a significant increase in irrigation water demand, which is met by increasing irrigation water supply from desalination. SSP5 shows intermediate impacts on other water security indicators, which is explained by a strong decrease in annual precipitation. This study helps exploring how different future socio-economic pathways affect water security and thereby supports evidence-based policy development.
ICCE, Eichstätt, Germany
July 24-25, 2024
SPHY User Days, Wageningen, the Netherlands
October 10-11, 2023
EGU General Assembly, Vienna, Austria
April 23-28, 2023